ar X iv : 1 10 8 . 28 74 v 1 [ m at h . Q A ] 1 4 A ug 2 01 1 THERMODYNAMIC SEMIRINGS

نویسنده

  • RYAN THORNGREN
چکیده

Thermodynamic semirings are deformed additive structures on characteristic one semirings, defined using a binary information measure. The algebraic properties of the semiring encode thermodynamical and information theoretic properties of the entropy function. Besides the case of the Shannon entropy, which arises in the context of geometry over the field with one element and the Witt construction in characteristic one, there are other interesting thermodynamic semirings associated to the Rényi and Tsallis entropies, and to the Kullback–Leibler divergence, with connections to information geometry, multifractal analysis, and statistical mechanics. A more general theory of thermodynamic semirings is then formulated in categorical terms, by encoding all partial associativity and commutativity constraints into an entropy operad and a corresponding information algebra.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : 0 90 8 . 27 37 v 1 [ m at h . G R ] 1 9 A ug 2 00 9 On Bruck Loops of 2 - power Exponent , II ∗

As anounced in [BSS], we show that the non-passive finite simple groups are among the PSL2(q) with q − 1 ≥ 4 a 2-power.

متن کامل

ar X iv : m at h / 01 04 17 8 v 1 [ m at h . N T ] 1 8 A pr 2 00 1 Arithmetic theory of q - difference equations

Part II. p-adic methods §3. Considerations on the differential case §4. Introduction to p-adic q-difference modules 4.1. p-adic estimates of q-binomials 4.2. The Gauss norm and the invariant χv(M) 4.3. q-analogue of the Dwork-Frobenius theorem §5. p-adic criteria for unipotent reduction 5.1. q-difference modules having unipotent reduction modulo ̟v 5.2. q-difference modules having unipotent redu...

متن کامل

ar X iv : 0 80 8 . 01 63 v 1 [ cs . D S ] 1 A ug 2 00 8 Twice - Ramanujan Sparsifiers ∗

We prove that for every d > 1 and every undirected, weighted graph G = (V, E), there exists a weighted graph H with at most ⌈d |V |⌉ edges such that for every x ∈ IR , 1 ≤ x T LHx x LGx ≤ d + 1 + 2 √ d d + 1 − 2 √ d , where LG and LH are the Laplacian matrices of G and H , respectively.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011